Quasi-t test in linear regression models
QT.Rd
This function performs the quasi-t test for the parameters that index linear regression models, considering models with unknown heteroscedasticity, where HC methods are used to estimate the covariance matrix.
Arguments
- model
Any object of class
lm
;- significance
Significance level of the test. By default, the level of significance is
0.05
;- hc
Method HC that will be used to estimate the covariance structure. The argument
method
may be0
,2
,3
,4
or5
;- h0
Constant used in the null hypothesis (default is
h0 = 0
);- ...
Additional arguments to be passed to the function
HC
.
References
Cribari-Neto, F. (2004). Asymptotic inference under heteroskedasticity of unknown form. Computational Statistics and Data Analysis, 45, 215-233.
Examples
library(hcci)
data(schools)
y = schools$Expenditure # dependent variable
x = schools$Income/10000 # regressor scaled by 10^4
model_1 = lm(y ~ x)
model_2 = lm(y ~ x+I(x^2))
QT(model_1, significance = 0.05, hc=4, h0=0)
#> $model
#>
#> Call:
#> lm(formula = y ~ x)
#>
#> Coefficients:
#> (Intercept) x
#> -151.3 689.4
#>
#>
#> $statistics
#> Intercept x
#> 0.8875671 2.9515083
#>
#> $p_value
#> Intercept x
#> 0.18738684 0.00158113
#>
QT(model_2, significance = 0.05, hc=4, h0=0)
#> $model
#>
#> Call:
#> lm(formula = y ~ x + I(x^2))
#>
#> Coefficients:
#> (Intercept) x I(x^2)
#> 832.9 -1834.2 1587.0
#>
#>
#> $statistics
#> Intercept x I(x^2)
#> 0.2768988 0.2241427 0.2891351
#>
#> $p_value
#> Intercept x I(x^2)
#> 0.3909289 0.4113231 0.3862390
#>