ccrm.Rd
ccrm
is used to fit a linear regression model to symbolic interval-valued variables based on the inequality constraints over
the range variables (Lima Neto and De Carvalho, 2010).
ccrm(formula1, formula2, data, ...)
formula1 | an object of class " |
---|---|
formula2 | an object of class " |
data | an optional data frame containing the variables in the model. |
… | other arguments. |
The Constrained Centre and Range method (CCRM) was proposed by Lima Neto and De Carvalho (2010) and fits two independent linear regression models on the midpoint and range of the intervals. In the Constrained Centre and Range Method, the estimative of the parameters of the range's model is based on inequality constraints. There is no constraints over the parameters estimates for the midpoint regression equation. The aim is to guarantee mathematical coherence between the predicted values of the lower and upper bounds of the response interval-valued variable Y, i.e., yL < yU.
ccrm
returns an object of class "ccrm
" including at least the following elements:
a named vector of coefficients for the Centre's explanatory variables.
a named vector of coefficients for the Range's explanatory variables.
an estimative of the standard deviation for the Centre's response variable.
an estimative of the standard deviation for the Range's response variable.
the degrees of freedom for the Centre residuals
the degrees of freedom for the Range residuals
the fitted values for the lower interval bound.
the fitted values for the upper interval bound.
the ordinary residuals for the lower interval bound.
the ordinary residuals for the upper interval bound.
Lima Neto, E.A. and De Carvalho, F.A.T. (2010). Constrained linear regression models for symbolic interval-valued variables. Computational Statistics and Data Analysis, 54, 333--347.
formula1
must contain the midpoint of the symbolic interval-valued variables. formula2
contain the range (upper limit minus lower limit) of the symbolic interval-valued variables.
data("Cardiological.CR", package = "iRegression") ex.ccrm <- ccrm(PulseC~SystC+DiastC,PulseR~SystR+DiastR,data=Cardiological.CR) ex.ccrm#> Call: #> ccrm.formula(formula1 = PulseC ~ SystC + DiastC, formula2 = PulseR ~ #> SystR + DiastR, data = Cardiological.CR) #> #> $coefficients.C #> (Intercept) SystC DiastC #> 21.1708061 0.3288879 0.1698512 #> #> $coefficients.R #> (Intercept) <NA> <NA> #> 17.9555967 0.0000000 0.2072155 #> #> $sigma.C #> [1] 9.516986 #> #> $sigma.R #> [1] 11.38413 #> #> $df.C #> [1] 8 #> #> $df.R #> [1] 8 #> #> $fitted.values.l #> [1] 51.55627 59.88662 79.91486 66.69788 51.55627 72.90938 62.09638 72.52889 #> [9] 72.66849 79.39915 67.78582 #> #> $fitted.values.u #> [1] 73.65618 81.98652 99.94261 90.45551 73.65618 97.08144 82.12413 #> [8] 93.38551 98.91271 101.49905 90.30016 #> #> $residuals.l #> [1] -7.5562732 0.1133848 -23.9148555 3.3021242 2.4437268 -2.9093816 #> [7] 0.9036178 -0.5288918 3.3315125 6.6008542 18.2141818 #> #> $residuals.u #> [1] -5.6561807 -9.9865227 -9.9426076 21.5444923 -1.6561807 2.9185555 #> [7] -7.1241343 6.6144939 -0.9127058 -5.4990532 9.6998432 #>